Special Offer: Get 50% off your first 2 months when you do one of the following
Personalized offer codes will be given in each session

(ICIOT 2020) BWCNN: Blink to Word, a Real-Time Convolutional Neural Network Approach

About This Webinar

Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the brain and the spinal cord, which leads to paralysis of motor functions. Patients retain their ability to blink, which can be used for communication. Here, We present an Artificial Intelligence (AI) system that uses eye-blinks to communicate with the outside world, running on real-time Internet-of-Things (IoT) devices. The system uses a Convolutional Neural Network (CNN) to find the blinking pattern, which is defined as a series of Open and Closed states. Each pattern is mapped to a collection of words that manifest the patient's intent. To investigate the best trade-off between accuracy and latency, we investigated several Convolutional Network architectures, such as ResNet, SqueezeNet, DenseNet, and InceptionV3, and evaluated their performance. We found that the InceptionV3 architecture, after hyper-parameter fine-tuning on the specific task led to the best performance with an accuracy of 99.20% and 94ms latency. This work demonstrates how the latest advances in deep learning architectures can be adapted for clinical systems that ameliorate the patient's quality of life regardless of the point-of-care.

Authors: Albara Ah Ramli, Rex Liu, Rahul Krishnamoorthy and Vishal I b (University of California Davis, USA); Xiaoxiao Wang (University of California, Davis, USA); Ilias Tagkopoulos and Xin Liu (University of California Davis, USA)

Email: arramli@ucdavis.edu, rexliu@ucdavis.edu, rkrishnamoorthy@ucdavis.edu, vib@ucdavis.edu, xxwa@ucdavis.edu, iliast@ucdavis.edu, xinliu@ucdavis.edu

Who can view: Everyone
Webinar Price: Free
Featured Presenters
Webinar hosting presenter Services Society
Albara Ah Ramli received a B.S. degree in computer engineering from the Computer Engineering Department, University of Tripoli, Libya, and a master's degree in computer science from University of California, Davis, USA. He is currently pursuing a Ph.D. degree at University of California, Davis, USA. His research interests include machine learning (deep learning and reinforcement learning), data-driven approach in networking, Human activity recognition.
Hosted By
Services Society webinar platform hosts (ICIOT 2020) BWCNN: Blink to Word, a Real-Time Convolutional Neural Network Approach
Services Society's Channel