Appendix A: Planning Template for Open Strategy Sharing Discussion

Open Strategy Sharing			
Problem to pose			
Why I chose this problem		Who solved it	Who should
this way?			

Appendix A: Planning Template for Open Strategy Sharing Discussion

Open Strategy Sharing			
Problem to pose4×23			
Why I chose this problem	Multi-digit multiplication problem with multiple solution paths; most students have single digit multiplication fluency		
Opening the lesson	Review hands signals, rehearse turn-and-talk "Today we are solving a multiplication problem mentally."		
How might my students solve this problem?		Who solved it this way?	Who should share today?
Break apart by place value \& distribute $4 \times 3=12,4 \times 20=80,12+80=92$			
Use a friendly number and compensate $4 \times 25=100,4 \times 2=8,100-8=92$			
Standard algorithm			
Notes to myself about what I'm looking for What strategies do students have for solving 4×23 ? Will any students use visual models?			
Other strategies that emerged during the lesson			
Repeated addition$23+23+23+23$			
Closing the lesson	Reinforce that there are different ways to solve a multi-digit multiplication problem.		

| | Appendix B: Planning Template for Compare and Connect Discussion |
| :--- | :--- | :--- |
| Strategy 1 | Compare and Connect |
| | |

Appendix B: Planning Template for Compare and Connect Discussion

Compare and Connect	
Strategy 1	Strategy 2
Count on	Make a 10
$6+5+4$	$6+5+4$
"siiiiiiix, $7,8,9,10,11 "$	$6+4=10$
$11+4=15$	$10+5=15$
"elevennnnnnn, $12,13,14,15 "$	

\left.| Supporting Students' Thinking | |
| :--- | :--- |
| What students might notice | How I might respond to support |
| their thinking | |$\right]$| Both strategies gave us the answer 15 |
| :--- |
| With both strategies, you make a new
 problem. Counting on gives you 11+4
 and making a ten gives you 10+5 the strategy help get to $15 ?$
 Making a ten in this problem is easy
 because you can just add the 6 and 4
 first. Which "new problem" is easier to add? |

What is the key mathematical idea I want to highlight?

When you have a problem with three addends and two of them are partners to 10 , using the make a ten strategy is efficient.

Appendix E: Planning Template for Define and Clarify Discussion

Define and Clarify

What new tool, representation, symbol, or vocabulary are we targeting in our discussion? Is this new to the students or are they using it in a new way?

What problem or task are we working on? How will I support meaning making? What partial understandings might arise?

Appendix E: Planning Template for Define and Clarify Discussion

Define and Clarify

What new tool, representation, symbol, or vocabulary are we targeting in our discussion? Is this new to the students or are they using it in a new way?

Representation: Area model
Intent: Clarify how an area model can show partial products when solving a multi-digit multiplication problem.

Students have been using the area model as a strategy for solving multdigit multiplicaton problems.

What problem or task are we working on? How will I support meaning making? What partial understandings might arise?
$4 \times 23 \quad$ How can we use an area model to show partial products?
23×4
$3 \times 4=12$
$20 \times 4=80$
$12+80=92$

Support making meaning of where factors and products are represented in the area model.
What does an area model look like? Where do the numbers go? Where do the partial products go? What is the length of this side? Where is the 12 ? Where is the 80 ? How can we find our total product? Where is the 92 ?

