

Enhancing supervision through responsible AI adoption

Vik Manne, CISSP CTO | **TRACKtech** Vik.manne@tracktechllc.com

Why AI in Community Supervision?

- Overwhelming caseloads and limited resources
- 45% of prison admissions due to supervision violations
- Alert fatigue from monitoring systems
- Al as a strategic tool, not a replacement

```
TITTOF_mod = modifier_o
  mirror object to mirr
mirror_mod.mirror_object
peration == "MIRROR_X"
mirror_mod.use_x = True
### irror_mod.use_y = Fals
### irror_mod.use_z = Fals
 operation == "MIRROR
 irror mod.use x = False
"Irror_mod.use_y = True"
 lrror_mod.use_z = False
  operation == "MIRROR_Z"
  rror_mod.use_x = False
  lrror_mod.use_y = False
 rror_mod.use_z = True
 melection at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.activ
  "Selected" + str(modifie
   rror ob.select = 0
  bpy.context.selected_ob
  ata.objects[one.name].se
  int("please select exact
  - OPERATOR CLASSES
      es.Operator):
      mirror to the select
   ject.mirror_mirror_x"
  **xt.active_object is not
```

What is AI? Plain Language!

Artificial Intelligence refers to computers performing tasks that typically require human intelligence.

```
all Tor_mod = modifier_o
 mirror object to mirr
mirror_mod.mirror_object
peration == "MIRROR_X"
mirror_mod.use_x = True
irror_mod.use_y = Fals
irror_mod.use_z = Fals
 _operation == "MIRROR
 irror_mod.use_x = False
"Irror_mod.use_y = True"
 lrror_mod.use_z = False
 operation == "MIRROR_Z"
  rror_mod.use_x = False
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 election at the end -add
  ob.select= 1
  er ob.select=1
   ntext.scene.objects.activ
  "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected ob
  lata.objects[one.name].sel
  int("please select exact
  -- OPERATOR CLASSES
     es.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
  **ext.active_object is not **
```

What is AI?

- AI = Machines performing intelligent tasks
- Everyday examples: voice assistants, predictive text
- Machine learning: learns patterns from data
- Generative AI: creates text, summaries, reports

You are already using Al!

Artificial Intelligence - Basics

Artificial Intelligence

Any technique that enables computers to mimic human intelligence. It includes *machine learning*

Machine Learning

A subset of AI that includes techniques that enable machines to improve at tasks with experience. It includes *deep learning*

Deep Learning

A subset of machine learning based on neural networks that permit a machine to train itself to perform a task.

- Machine Learning
- Generative AI or LLMs (Large Language Models) – ChatGPT's Co-Pilot, Google Gemini etc

Machine Learning

Machine Learning

Instead of teaching a computer rule (If x then do Y) we train it to "learn" by feeding it patterns

Generative Al

- AI models that can generate human-like text, images or other content
- Generative AI could potentially help officers by drafting routine reports or case notes, summarizing lengthy documents, or even roleplaying in training scenarios.
- Al can make mistakes or fabricate info

What is a Large Language Model (LLM)?

An LLM is a type of Artificial Intelligence that has been trained to understand and generate human language.

Think of it like a very advanced auto-complete—but instead of predicting just the next word, it can generate full paragraphs, answer questions, summarize documents, or even hold covertions.

 An LLM is a type of Artificial Intelligence that has been trained to understand and generate human language.

How does it work?

Training – Tokens – Neural Networks – Attention Mechanism – Output Generation

Training on Text Data

- The model is fed massive amounts of text (books, articles, websites).
- It reads billions of sentences to learn patterns of language, grammar, facts, and even reasoning.

Training them is more involved.

Think of it like compressing the internet.

Chunk of the internet, ~10TB of text

Entire internet as of 2023 is around 120 Zeta bytes!

6,000 GPUs for 12 days, ~\$12MM ~1e24 FLOPS

*numbers for Llama 2 70B

Training – <u>Tokens</u> – Neural Networks – Attention Mechanism – Output Generation

- Tokens The Building Blocks
 - LLMs don't read text like humans.
 - They break it into small pieces called tokens (think words or chunks of words).
 - The model predicts what token is most likely to come next, based on what came before.
 - This is why it feels like it's "writing like a person" it's statistically choosing the most natural
 continuation.

- Neural Networks and Layers
 - The core of an LLM is a neural network with many layers (sometimes hundreds).
 - Each layer processes information differently:
 - Early layers learn basic patterns (like spelling or sentence structure).
 - Deeper layers learn complex meaning and relationships
- These networks mimic how neurons in the brain fire and connect, but digitally.

Training – Tokens – <u>Neural Networks</u> – Attention Mechanism – Output Generation

Neurons in our brain

Neurons in a computer

Training – Tokens – Neural Networks – <u>Attention Mechanism</u> – Output Generation

- LLMs use a feature called "attention" to figure out which words in a sentence matter most.
- This mechanism helps the model focus on relevant context, not just blindly predict words.

Training – Tokens – Neural Networks – Attention Mechanism – Output Generation

Output Generation

- When you ask a question or type a prompt, the LLM encodes it into numbers, runs it through its neural network, and produces a response one token at a time.
- It doesn't "know" facts like a human—it calculates probabilities based on its training data.

LLMs (ChatGPT) Can Make Mistakes! Hallucinations: LLMs can sometimes generate made-up information because they predict text patterns, not truth.

Biases: If training data has bias (e.g., unfair stereotypes), the model can accidentally repeat them.

Knowledge Cutoff: They only "know" information up to the date they were trained.

It's not thinking or reasoning like a person.

Where's the "Intelligence"?

It's more like an ultra-powerful statistical text engine.

Because it's seen so many patterns, it can **mimic understanding** and produce responses that feel intelligent.

Challenges & Al Solutions

High caseloads → AI automates reminders, scheduling, paperwork

Technical violations →
Predictive alerts & early
interventions

Alert fatigue → Al filters noise, prioritizes alerts

Limited support → Apps with resources, coaching messages

Responsible Al Use

Al as support, not decision-maker

Address bias and ensure data quality

Maintain privacy and transparency

Train staff, build trust, and keep humans in the loop

Getting Started with Al

Consult with your IT policy regarding AI usage prior to using publicly available AI Systems.

Usage of AI tools on unapproved platforms is a liability

- Start small with pilot projects
- Engage officers and clients early
- Learn from other agencies' successes
- Scale responsibly for improved outcomes

Key Takeaways Al enhances officers' abilities, doesn't replace them

Tangible benefits: fewer violations, improved efficiency

Human oversight, ethics, and gradual adoption are essential

Thank you!

Vik Manne, CISSP CTO | **TRACKtech** <u>Vik.manne@tracktechllc.com</u> <u>https://tracktechllc.com</u>